Matchings and Tilings in Hypergraphs
نویسندگان
چکیده
We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k partite codegrees, in which case the partite minimum codegree is not necessary large. Second, as a generalization of (hyper)graph matchings, we determine the minimum vertex degree threshold asymptotically for perfect Ka,b,c-tlings in large 3-uniform hypergraphs, where Ka,b,c is any complete 3-partite 3-uniform hypergraphs with each part of size a, b and c. This partially answers a question of Mycroft, who proved an analogous result with respect to codegree for r-uniform hypergraphs for all r ≥ 3. Our proof uses Regularity Lemma, the absorbing method, fractional tiling, and a recent result on shadows for 3-graphs. INDEX WORDS: Absorbing method, Regularity lemma, Hypergraph, Perfect matching, Graph tiling, Graph packing, Minimum degree. MATCHINGS AND TILINGS IN HYPERGRAPHS
منابع مشابه
Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کاملApplications of graphical condensation for enumerating matchings and tilings
A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in o...
متن کاملExact Minimum Degree Thresholds for Perfect Matchings in Uniform Hypergraphs Iii
We determine the exact minimum l-degree threshold for perfect matchings in k-uniform hypergraphs when the corresponding threshold for perfect fractional matchings is significantly less than 1 2 ( n k−l ) . This extends our previous results [18, 19] that determine the minimum l-degree thresholds for perfect matchings in k-uniform hypergraphs for all l ≥ k/2 and provides two new (exact) threshold...
متن کاملA Note on Perfect Matchings in Uniform Hypergraphs
We determine the exact minimum `-degree threshold for perfect matchings in kuniform hypergraphs when the corresponding threshold for perfect fractional matchings is significantly less than 12 ( n k−` ) . This extends our previous results that determine the minimum `-degree thresholds for perfect matchings in k-uniform hypergraphs for all ` > k/2 and provides two new (exact) thresholds: (k, `) =...
متن کاملApproximate Counting of Matchings in Sparse Hypergraphs
In this paper we give a fully polynomial randomized approximation scheme (FPRAS) for the number of all matchings in hypergraphs belonging to a class of sparse, uniform hypergraphs. Our method is based on a generalization of the canonical path method to the case of uniform hypergraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016